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1. Introduction and summary

The AdS/CFT correspondence [1] has been the subject of intensive research. This duality

provides a powerful tool to study a plethora of interesting topics in theoretical physics.

One of the best studied examples is N = 4 SYM gauge theory which is conjectured to be

dual to superstring theory on AdS5 × S5. However, even testing or proving the duality for

these concrete models is a difficult problem.

A breakthrough in the understanding of this duality was the discovery of integrable

structures. Integrability was found in N = 4 super Yang-Mills theory by the appearance

of (integrable) spin chains describing the operator spectrum [2]. The classical string sigma

model on AdS5 × S5 was also shown to be integrable [3]. If the full quantum theories also

exhibit integrable structures, then that would constrain them considerably. For example,

in scattering processes for integrable theories the set of particle momenta is conserved

and scattering processes always factorize into a sequence of two-body interactions. This

implies that in such theories the scattering information is encoded in the two-body S-

matrix. Unfortunately, a full proof of integrability of both theories is currently still lacking,

but nevertheless there is a lot of evidence hinting that integrability is a feature of the full

quantum theories.

By assuming integrability one can make use of the S-matrix approach. This proved to

be a powerful instrument to study the operator spectrum of N = 4 SYM. [2, 4 – 6]. This lead

to the conjecture of the “all-loop” Bethe equations describing the gauge theory asymptotic

spectrum [7, 8]. For the AdS5 × S5 superstring, based on the knowledge of the classical
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finite-gap solutions [9], a Bethe ansatz for the su(2) sector was proposed [10]. Finally, in

both cases, exact two body S-matrices were found [8, 11]. These enabled the use of the

Bethe ansatz [8, 12, 13], confirming the conjectured Bethe equations for physical states.

More precisely, the two body S-matrix (scattering fundamental multiplets) that ap-

pears in this approach, is almost completely fixed by symmetry. Both the asymptotic

spectrum of N = 4 super Yang-Mills theory [5, 8] as well as the light-cone Hamilto-

nian [14 – 16] for the AdS5 × S5 superstring exhibit the same symmetry algebra; centrally

extended su(2|2). The requirement that the S-matrix is invariant under this algebra de-

termines it uniquely up to an overall phase factor [8] and the choice of representation

basis [11]. In a suitable local scattering basis, the S-matrix respects most properties of

massive two-dimensional integrable field theory, like unitarity, crossing symmetry and the

Yang-Baxter equation [11]. Furthermore, the (dressing) phase appeared to be a striking

feature of the string S-matrix and it has been studied intensely, see e.g. [17 – 20]. By com-

bining its expansion in terms of local conserved charges with crossing symmetry [21], one

can find interesting solutions [17, 22], which incorporates string and gauge theory data.

Actually, apart from the multiplet of fundamental particles, the string sigma model

also contains an infinite number of bound states [23]. These bound states fall into short

(atypical) symmetric representations of the centrally extended su(2|2) algebra [24 – 26]. Of

course, these states scatter via their own S-matrices. Recently a number of these bound

states S-matrices have been found; they describe scattering processes involving fundamental

multiplets and two-particle bound state multiplets [27] and the scattering of a fundamental

multiplet with an arbitrary bound state multiplet [28]. However, invariance under centrally

extended su(2|2) is not enough to fix all these S-matrices. One needs to impose the Yang-

Baxter equation by hand in order to fix them up to a phase. The overall phase that still

remains can be chosen to satisfy crossing symmetry [27].

Both the fundamental and the two particle bound state S-matrices were shown to

exhibit a larger symmetry algebra1 of Yangian type [29 – 32]. Moreover, as an alternative

to the Yang-Baxter equation, the bound state S-matrices appear to be completely fixed

(again up to an overall scale), by requiring invariance under Yangian symmetry [32]. This

seems to indicate that the Yangian symmetry is restrictive enough to fix all bound state

S-matrices and perhaps should be seen as the fundamental scattering symmetry.

The formulated asymptotic Bethe ansätze, following from the S-matrix approach, only

describe the spectra in the infinite volume limit. However, for a full check of this par-

ticular case of the AdS/CFT correspondence, the complete spectra have to be computed

and compared. Away from the asymptotic region, matters become more involved because

wrapping interactions appear. One way to include these is Lüscher’s perturbative ap-

proach [33 – 36]. In Lüscher’s approach one deals with corrections coming from virtual

particles that propagate around the compact direction. These virtual particles can be both

fundamental particles and bound states. This method has proven quite successful since it

recently allowed the computation of the full four-loop Konishi operator, including wrap-

ping interactions [28, 37]. The result coincided with the gauge theory computation [38 – 40],

providing an extremely non-trivial check of the correspondence.

1See [11] for an earlier discussion of higher symmetries of the fundamental S-matrix.
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The approach by Lüscher is closely related to the thermodynamic Bethe ansatz

(TBA) [41]. In the TBA one deals with finite size effects by defining a mirror model [23].

Finite size effects in the original theory correspond to finite temperature effects in the in-

finite volume for the mirror theory. Here again, one needs to include all (physical) bound

states. One of the advantages of this method is that one can still use the asymptotic Bethe

ansatz. So far, this has only been carried out for the fundamental multiplets [8, 12, 13].

In other words, knowledge of the bound states, their S-matrices and the corresponding

Bethe ansätze is crucial for a complete understanding of finite size effects. Because of the

relation between Yangian symmetry and the bound state S-matrices, one might suspect

that the Bethe equations are also closely related to Yangian symmetry. This indeed appears

to be the case as we will explain in this note. The Bethe equations that are derived can be

used to study bound states of the mirror model by analytic continuation [23].

The aim of this paper is to provide a rigorous derivation of the Bethe Ansatz equations

for the bound states, by diagonalizing the multi-particle bound state S-matrices using

Yangian symmetry as a tool. The explicit bound state number dependence in the Bethe

equations appears through the parameters x± and the dressing phase only. The Bethe

equations emerging in this way, were found, a posteriori, to follow from a fusion procedure.

This justifies the fusion procedure at the level of the Bethe ansatz equations.

The paper is organized as follows. In the first section we recall the basic formulas

of the Yangian of the centrally extended su(2|2) algebra in the superspace formalism.

Subsequently, we will discuss the Bethe ansatz for fundamental representations. Finally,

the Bethe ansatz will be reformulated in terms of coproducts of the Yangian and the bound

state Bethe equations will be derived.

2. Symmetry algebra, coproducts and S-matrices

In this paper the full (Yangian) symmetry algebra of the S-matrix is important. In this

section we will give a brief overview of the Yangian symmetry of the bound state S-matrices.

For more details see e.g [32] and references therein.

2.1 The algebra in superspace

We will first discuss centrally extended su(2|2). This algebra is the symmetry algebra of the

AdS5 × S5 superstring and it is also the symmetry algebra of the spin chain connected to

N = 4 SYM. The algebra has bosonic generators R, L, supersymmetry generators Q, G and

central charges H, C, C†. The non-trivial commutation relations between the generators are

given by

[L b
a , Jc] = δb

cJa − 1

2
δb
aJc [R β

α , Jγ ] = δβ
γ Jα − 1

2
δβ
αJγ

[L b
a , Jc] = −δc

aJb +
1

2
δb
aJc [R β

α , Jγ ] = −δγ
αJβ +

1

2
δβ
αJγ

{Q a
α , Q b

β } = ǫαβǫabC {G α
a , G β

b } = ǫαβǫabC
†

{Qa
α, Gβ

b } = δa
b R β

α + δβ
αL a

b +
1

2
δa
b δβ

αH. (2.1)
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The eigenvalues of the central charges are denoted by H,C,C†. The charge H is Hermitian

and the charges C,C† and the generators Q, G are conjugate to each other.

For computational purposes, it proves worthwhile to consider representations of the

algebra in the superspace formalism. Consider the vector space of analytic functions of two

bosonic variables w1,2 and two fermionic variables θ3,4. Since we are dealing with analytic

functions we can expand any such function Φ(w, θ):

Φ(w, θ) =
∞
∑

ℓ=0

Φℓ(w, θ),

Φℓ = φa1...aℓwa1 . . . waℓ
+ φa1...aℓ−1αwa1 . . . waℓ−1

θα

+φa1...aℓ−2αβwa1 . . . waℓ−2
θαθβ. (2.2)

The representation that describes ℓ-particle bound states of the light-cone string theory on

AdS5 × S5 of centrally extended su(2|2) is 4ℓ dimensional. It is realized on a graded vector

space with basis |ea1...aℓ
〉, |ea1 ...aℓ−1α〉, |ea1...aℓ−2αβ〉, where ai are bosonic indices and α, β are

fermionic indices and each of the basis vectors is totally symmetric in the bosonic indices

and anti-symmetric in the fermionic indices [24, 25, 27]. In terms of the above analytic func-

tions, the basis vectors of the totally symmetric representation can evidently be identified

|ea1...aℓ
〉 ↔ wa1 . . . waℓ

, |ea1...aℓ−1α〉 ↔ wa1 . . . waℓ−1
θα and |ea1...aℓ−1αβ〉 ↔ wa1 . . . waℓ−2

θαθβ

respectively. In other words, we find the atypical totally symmetric representation de-

scribing ℓ-particle bound states when we restrict to terms Φℓ. For later convenience, we

introduce the notation W
(m)

1i2j3k4l ≡ (w
(m)
1 )i(w

(m)
2 )j(θ

(m)
3 )k(θ

(m)
4 )l, where (m) denotes differ-

ent copies of the representation. Clearly, for an ℓ-particle bound state representation, this

means that i + j + k + l = ℓ and k, l = 0, 1.

In this representation the algebra generators can be written in differential operator

form in the following way

L b
a = wa

∂

∂wb
− 1

2
δb
awc

∂

∂wc
, R β

α = θα
∂

∂θβ
− 1

2
δβ
αθγ

∂

∂θγ
, (2.3)

Q a
α = aθα

∂

∂wa
+ bǫabǫαβwb

∂

∂θβ
, G α

a = dwa
∂

∂θα
+ cǫabǫ

αβθβ
∂

∂wb

and the central charges are

C = ab

(

wa
∂

∂wa
+ θα

∂

∂θα

)

C† = cd

(

wa
∂

∂wa
+ θα

∂

∂θα

)

H = (ad + bc)

(

wa
∂

∂wa
+ θα

∂

∂θα

)

. (2.4)

To form a representation, the parameters a, b, c, d satisfy the condition ad − bc = 1. The

central charges become ℓ dependent:

H = ℓ(ad + bc), C = ℓab, C† = ℓcd. (2.5)
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The parameters a, b, c, d can be expressed in terms of the particle momentum p and the

coupling g:

a =

√

g

2ℓ
η b =

√

g

2ℓ

iζ

η

(

x+

x−
− 1

)

c = −
√

g

2ℓ

η

ζx+
d =

√

g

2ℓ

x+

iη

(

1 − x−

x+

)

, (2.6)

where the parameters x± satisfy

x+ +
1

x+
− x− − 1

x−
=

2iℓ

g
,

x+

x−
= eip (2.7)

and the parameters η are given by

η = eiξη(p), η(p) = e
i
4
p
√

ix− − ix+, ζ = e2iξ. (2.8)

The fundamental representation, which is used in the derivation of the S-matrix scattering

fundamental multiplets [8, 11] is obtained by taking ℓ = 1.

2.2 Yangians, coproducts and the S-matrix

The double Yangian DY (g) of a (simple) Lie algebra g is a deformation of the universal

enveloping algebra U(g[u, u−1]) of the loop algebra g[u, u−1]. The Yangian is generated by

level n generators JA
n , n ∈ Z that satisfy the commutation relations

[JA
m, JB

n ] = FAB
C JC

m+n + O(~), (2.9)

where FAB
C are the structure constants of g. The level-0 generators JA

0 span the Lie-algebra.

The su(2|2) Yangian can be supplied with a coproduct in the following way [31, 42, 43]

∆(JA
n ) = JA

n ⊗ 1 + U [A] ⊗ JA
n +

~

2

n−1
∑

m=0

FA
BCJB

n−1−mU [C] ⊗ JC
m + O(~2)

∆(U) = U ⊗ U , (2.10)

where U comprises a so-called braiding factor.

An important representation of a Yangian is the evaluation representation. This rep-

resentation consists of states |u〉, with action JA
n |u〉 = unJA

0 |u〉. In this representation the

coproduct structure is fixed in terms of the coproducts of J0, J1. For the remainder of this

paper we will work in this representation and identify J1 ≡ Ĵ = g
2iuJ for the su(2|2) Yangian.

One also finds that u is actually dependent on the parameters x± via uj = x+
j + 1

x+
j

− iℓj

g .

The S-matrix is a map between the following representations:

S : Vℓ1(p1, e
ip2) ⊗ Vℓ2(p2, 1) −→ Vℓ1(p1, 1) ⊗ Vℓ2(p2, e

ip1), (2.11)

where Vℓi
(pi, e

2iξ) is the ℓi-bound state representation with parameters ai, bi, ci, di with

the explicit choice of ζ = e2iξ. This specific choice removes the braid factor U from the

discussion [11].

– 5 –



J
H
E
P
0
1
(
2
0
0
9
)
0
0
5

The bound state S-matrices are now fixed, up to a overall phase, by requiring invariance

under the coproducts of the (Yangian) symmetry generators

S ∆(JA) = ∆op(JA) S

S ∆(ĴA) = ∆op(ĴA) S, (2.12)

where ∆op = P∆ with P the graded permutation.

For completeness and future reference, we will give the explicit formulas of the different

coproducts and of the parameters ai, bi, ci, di. First, the su(2|2) operators:

∆(JA
0 ) = JA

1;0 + JA
2;0. (2.13)

The coproducts of the Yangian generators are

∆(L̂a
b) = L̂ a

1;b + L̂ a
2;b +

1

2
L c

1;bL
a

2;c −
1

2
L a

1;cL
c

2;b −
1

2
G

γ
1;bQ

a
2;γ − 1

2
Q a

1;γG
γ

2;b

+
1

4
δa
b G

γ
1;cQ

c
2;γ +

1

4
δa
b Q c

1;γG
γ

2;c

∆(R̂α
β) = R̂ α

1;β + R̂ α
2;β − 1

2
R

γ
1;βR α

2;γ +
1

2
R α

1;γR
γ

2;β +
1

2
G α

1;cQ
c

2;β +
1

2
Q c

1;βG α
2;c

−1

4
δα
β G

γ
1;cQ

c
2;γ − 1

4
δα
β Q c

1;γG
γ

2;c (2.14)

∆(Q̂a
β) = Q̂ a

1;β + Q̂ a
2;β − 1

2
R

γ
1;βQ a

2;γ +
1

2
Q a

1;γR
γ

2;β − 1

2
L a

1;cQ
c

2;β +
1

2
Q c

1;βL a
2;c

−1

4
H1Q

a
2;β +

1

4
Q a

1;βH2 +
1

2
ǫβγǫadC1G

γ
2;d −

1

2
ǫβγǫadG

γ
1;dC2

∆(Ĝα
b) = Ĝ α

1;b + Ĝ α
2;b +

1

2
L c

1;bG
α

2;c −
1

2
G α

1;cL
c

2;b +
1

2
R α

1;γG
γ

2;b −
1

2
G

γ
1;bR

α
2;γ

+
1

4
H1G

α
2;b −

1

4
G α

1;bH2 −
1

2
ǫbcǫ

αγC
†
1Q

c
2;γ +

1

2
ǫbcǫ

αγQ c
1;γC

†
2

and for the central charges

∆(Ĥ) = Ĥ1 + Ĥ2 + C1C
†
2 − C

†
1C2

∆(Ĉ) = Ĉ1 + Ĉ2 +
1

2
H1C2 −

1

2
C1H2 (2.15)

∆(Ĉ†) = Ĉ
†
1 + Ĉ

†
2 +

1

2
H1C

†
2 −

1

2
C
†
1H2.

The product is ordered, e.g. Q1Q2 means first apply Q2, then Q1 (as differential operators).

Finally, the coefficients used in ∆ are given by:

a1 =

√

g

2ℓ1
η1 b1 = −ieip2

√

g

2ell1

1

η1

(

x+
1

x−
1

− 1

)

c1 = −e−ip2

√

g

2ℓ1

η1

x+
1

d1 = i

√

g

2ℓ1

x+
1

η1

(

x−
1

x+
1

− 1

)

(2.16)

η1 = ei
p1
4 ei

p2
2

√

ix−
1 − ix+

1

– 6 –
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a2 =

√

g

2ℓ2
η2 b2 = −i

√

g

2ℓ2

1

η2

(

x+
2

x−
2

− 1

)

c2 = −
√

g

2ℓ2

η2

x+
2

d2 = i

√

g

2ℓ2

x+
2

iη2

(

x−
2

x+
2

− 1

)

(2.17)

η2 = ei
p2
4

√

ix−
2 − ix+

2

The coefficients in ∆op are given by:

aop
1 =

√

g

2ℓ1
ηop
1 bop

1 = −i

√

g

2ℓ1

1

ηop
1

(

x+
1

x−
1

− 1

)

cop
1 = −

√

g

2ℓ1

ηop
1

x+
1

dop
1 = i

√

g

2ℓ1

x+
1

iηop
1

(

x−
1

x+
1

− 1

)

ηop
1 = ei

p1
4

√

ix−
1 − ix+

1

aop
2 =

√

g

2ℓ2
ηop
2 bop

2 = −ieip1

√

g

2ℓ2

1

ηop
2

(

x+
2

x−
2

− 1

)

cop
2 = −e−ip1

√

g

2ℓ2

ηop
2

x+
2

dop
2 = i

√

g

2ℓ2

x+
2

ηop
2

(

x−
2

x+
2

− 1

)

ηop
2 = ei

p2
4 ei

p1
2

√

ix−
2 − ix+

2 (2.18)

The non-trivial braiding factors are all hidden in the parameters of the four representa-

tions involved.

3. The su(2|2) coordinate Bethe Ansatz

In this section we will briefly discuss the coordinate Bethe Ansatz for the su(2|2) string

S-matrix as done in [8, 13].

3.1 Formalism

Consider KI excitations with momentum p1, . . . , pKI . We divide our space into regions

P|Q, with P,Q permutations. In the sector where the particle coordinates are ordered as

xQ1 < . . . < xQ
KI

the ansatz for the wave function is given by

|p1, . . . , pKI〉 =
∑

P

∫

dx
{

AP|Q
a1...a

KI
eipPi

xQi

}

φa1(x1) . . . φaK (xKI) (3.1)

The indices ai denote the type of the ith particle and φai(xi) is a creation operator that

creates a particle of type ai at position xi. In general when the system contains bound

states, the indices ai also run over bound states. The different sectors are related to each

other by permutations and S-matrices. To be more precise

AP|Q = Si,jA
P ′|Q′

, (3.2)

– 7 –
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where P ′|Q′ are the permutations obtained from P |Q by interchanging the neighboring ith

and jth particles. To make this transformation property more explicit we will write

AP|Q
a1...aK

≡ AP|Q
a1...aK

wa1 . . . wak
, (3.3)

where we do not sum over repeated indices. Periodicity of the total wave function is then

formulated in the following Bethe equations

SkA
P|Q := Skk−1 . . . SkKISk1 . . . Skk+1A

P|Q = eipkLAP|Q. (3.4)

The Bethe ansatz now consists of making a ansatz for the coefficients AP|Q in such a way

that they solve (3.2). This ansatz is then plugged in the above formula and the explicit

Bethe equations can be read off.

Obviously, since any scattering process reduces to a product of two body scattering

processes, we only need to consider two sites of the wave function. In what follows we will

solve the for the coefficients A
P|Q
i1...i

KI
.

3.2 Solving the coefficients

We will now solve the coefficients for the su(2|2) S-matrix for fundamental representations.

In order make the derivation more transparent, we explicitly identify the coefficients AP |Q

with states |·〉 ∈ V1(p1)⊗ . . .⊗V1(pKI). From now on we will omit the explicit mentioning

of the sector P|Q we are in. The different sectors are related via relabelling of momenta

and interchanging of particle positions and hence the coefficients should be well-defined in

the sense that they should respect this. From (3.2), we see that in order to be well-defined,

we must have that

S|φ〉 = |φ〉π, (3.5)

where |φ〉π is the coefficient as constructed in the sector P ′|Q′.

Let us first define the vacuum:

|0〉 = W
(1)
1 . . . W

(K)
1 . (3.6)

One can also take other vacua but this leads to equivalent equations. If we, for the moment,

consider the undressed S-matrix, we find that

S|0〉 = |0〉. (3.7)

In the light of (3.5), we indeed find that this vacuum corresponds to a vacuum in all sectors

P|Q and is well defined.

The complete dressing phase S0(pi, pj) can be easily incorporated by a rescaling

|0〉 =
W

(1)
1 . . . W

(K)
1

√

∏

i6=j S0(pi, pj)
. (3.8)

– 8 –
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p1p1

p1p1

p1p1

p1p1

p2p2
p2p2

p2p2 p2p2

x1 < x2x1 < x2

x2 < x1x2 < x1

SS

Figure 1: Example of the construction of the coefficients in the different sectors. The black dots

correspond to the bosons of the vacuum, W1, and the red dots correspond to the inserted fermions.

The construction is well-defined if, by acting on the coefficient in the upper left quadrant by the

S-matrix, one obtains the coefficient in the lower right quadrant.

This works because S0(pj, pi) = S0(pj , pi)
−1. To avoid making the formulas too cumber-

some, we will restrict to the undressed S-matrix in the remainder of the paper. We will, of

course, include the dressing phase in the full Bethe equations.

The next thing to consider is the case where we have a fermion in this vacuum (the

case in which the other boson is inserted is treated later on). We make an ansatz of the

following form:

|α〉 :=
∑

i

Ψi(y)W
(1)
1 . . . W (i)

α . . . W
(K)
1 , Ψk(y) = f(y, pk)

∏

l<k

SII,I(y, pl). (3.9)

We will denote S(y, p) ≡ SII,I(y, p). We must check whether this construction is well

defined in the sense that it respects (3.5). How this works is schematically depicted in

figure 1.

By the factorization property of the S-matrix, it suffices to restrict to a two particle

state and a two particle S-matrix. For this case (3.5) gives the following equations

ei
p1
2

ei
p2
2

η(p2)

η(p1)

x+
1 − x−

1

x+
1 − x−

2

f(y, p1) + ei
p1
2

x−
1 − x−

2

x+
1 − x−

2

f(y, p2)S(y, p1) = f(y, p2)

e−i
p2
2

x+
1 − x+

2

x+
1 − x−

2

f(y, p1) +
η(p1)

η(p2)

x+
2 − x−

2

x+
1 − x−

2

f(y, p2)S(y, p1) = f(y, p1)S(y, p2). (3.10)

These equations can be solved explicitly and the solution is given by:

f(y, pk) = η(pk)

√

x−
k

x+
k

y

y − x−
k

√

gℓk

2

S(y, pk) =

√

x−
k

x+
k

y − x+
k

y − x−
k

, (3.11)

where y enters as a integration constant. With a modest amount of foresight, we choose

the overall normalization of f to be dependent on the bound state number ℓk.

Actually this solution is the unique solution of (3.5) for one fermion in the vacuum up

to overall normalization (and hence the only well-defined coefficient for this case). This

can easily be seen from (3.10). The general wave function is of the form

|α〉 := A1W
(1)
α . . . W

(K)
1 + A2W

(1)
1 W (2)

α . . . W
(K)
1 + . . . . (3.12)
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Since we are only interested in solving (3.4), the normalization of the state is irrelevant.

Let us therefore pick a convenient normalization, A1 ≡ f(p1), then by the first equation

of (3.10) one finds A2 in terms of A1. This indeed fixes A2 as f(p2)S(p1) and by induction

the rest of the coefficients also follow. Finally, let us stress that by fixing the normalization,

one automatically finds from the S-matrix that the other coefficients of the wave function

are of a factorized form.

The problem becomes more involved upon inserting two excitations. In this case, it

appears that the ansatz for the coefficient can be written as

|αβ〉 = |αβ〉y1y2 + SII|αβ〉y1y2, (3.13)

where we introduce a new S-matrix SII

SII|αβ〉y1y2 = M(y1, y2)|αβ〉y2y1 + N(y1, y2)|βα〉y2y1 . (3.14)

Explicitly, it is given by

|αβ〉 =
∑

k<l

Ψk(y1)Ψl(y2)W
(1)
1 . . . W (k)

α . . . W
(l)
β . . . W

(K)
1 +

+SII
∑

k<l

Ψk(y1)Ψl(y2)W
(1)
1 . . . W (k)

α . . . W
(l)
β . . . W

(K)
1 + (3.15)

+ǫαβ
∑

k

Ψk(y1)Ψk(y2)h(y1, y2, pk)W
(1)
1 . . . W

(k)
2 . . . W

(K)
1

When we restrict to just two sites, the wave function splits into the sum of a wave function

with just one fermion. By construction, this piece is exactly as described above. The other

piece contains two excitations and is given by

|αβ〉 = {f(y1, p1)f(y2, p2)S(y2, p1) + Mf(y2, p1)f(y1, p2)S(y1, p1)}W (1)
α W

(2)
β

+Nf(y2, p1)f(y1, p2)S(y1, p1)W
(1)
β W (2)

α

+ǫαβh(y1, y2, p1)f(y2, p1)f(y1, p1)W
(1)
2 W

(2)
1 (3.16)

+ǫαβh(y1, y2, p2)f(y2, p2)f(y1, p2)S(y2, p1)S(y1, p1)W
(1)
1 W

(2)
2

Plugging this into (3.5) again allows one to find the explicit (unique) solutions of the

unknown functions:

M(y1, y2) =
2i/g

y1 + 1
y1

− y2 − 1
y2

− 2i
g

N(y1, y2) = −
y1 + 1

y1
− y2 − 1

y2

y1 + 1
y1

− y2 − 1
y2

− 2i
g

(3.17)

h(y1, y2, pk) =
i

ℓkη(pk)2
y1y2 − x+

k x−
k

y1y2

x+
k − x−

k

x−
k

y1 − y2

y1 + 1
y1

− y2 − 1
y2

− 2i
g

In this process, we introduced a new S-matrix and we also insist on naturalness of the wave

function with respect to this S-matrix, SII. One can repeat the above procedure to deal
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with this. For details we refer to [13, 8]. In this process we are again lead to introduce new

functions SII,II, f (2), SIII,II, SIII,III. The result of this consideration is

SII,II = −M − N = 1

f (2)(w, yk) =
w − i

g

w − vk − i
g

SIII,II(w, yk) =
w − vk + i

g

w − vk − i
g

(3.18)

SIII,III(w1, w2) =
w1 − w2 − 2i

g

w1 − w2 + 2i
g

,

The Bethe equations (3.4) are formulated in terms of the factors used in the ansatz in the

following way

eiLA,k =
III
∏

B=I

KB
∏

l=1

SBA(xB
l , xA

k ), (B, l) 6= (A, k) (3.19)

where A,B denote the different levels and SAB can be seen as the S-matrix describing

scattering at different levels. Moreover, eiLI,k = e−iLpk and eiLII,k = eiLIII,k = 1 are phases.

By putting all of this together one obtains the well-known Bethe equations describing

the asymptotic spectrum of the AdS5 × S5 superstring:

eipkL =

KI
∏

l=1,l 6=k

[

S0(pk, pl)
x+

k − x−
l

x−
k − x+

l

√

x+
l x−

k

x−
l x+

k

]2 2
∏

α=1

KII
(α)
∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√

x+
k

x−
k

1 =

KI
∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√

x−
k

x+
k

KIII
(α)
∏

l=1

y
(α)
k + 1

y
(α)
k

− w
(α)
l + i

g

y
(α)
k + 1

y
(α)
k

− w
(α)
l − i

g

(3.20)

1 =

KII
(α)
∏

l=1

w
(α)
k − y

(α)
k − 1

y
(α)
k

+ i
g

w
(α)
k − y

(α)
k − 1

y
(α)
k

− i
g

KIII
(α)
∏

l 6=k

w
(α)
k − w

(α)
l − 2i

g

w
(α)
k − wα

l + 2i
g

,

where α = 1, 2 reflect the two copies of su(2|2) and S0(pk, pl) is the overall phase of

the S-matrix.

Notice that in this construction, the explicit form of the S-matrix is used. However,

since not all bound state S-matrices are known, one must approach this problem in a

different way if one wishes to find their Bethe equations.

4. Bethe ansatz and yangian symmetry

In this section we will generalize the above construction to arbitrary bound states. We will

do this by considering coproducts of (Yangian) symmetry generators. This formulation

allows us to solve (3.5) without knowing the explicit form of the involved bound state S-

matrix. This will lead to the Bethe equations for arbitrary configurations of bound states.
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4.1 Single excitations

We will again start by considering a single excitation in the vacuum

|0〉 = W
(1)

1ℓ1
. . . W

(K)

1ℓK
. (4.1)

As noted above, it suffices to restrict to two bound state representations. The natural

generalization of a single excitation wave function is:

|α〉 :=
∑

i

Ψi(y)W
(1)

1ℓ1
. . . W

(i)

311ℓi−1 . . . W
(K)

1ℓK
, Ψk(y) = f(y, pk)

∏

l<k

SI,II(y, pl), (4.2)

Restricted to two sites, the wave function is of the form

|α〉 = f(p1)W
(1)

α1ℓ1−1W
(2)

1ℓ2
+ f(p2)S(p1)W

(1)

1ℓ1
W

(2)

α1ℓ2−1 , (4.3)

where we again have chosen a particular normalization. The remarkable fact is that one

can write this as:

∆̃Q1
α|0〉 :=

(

K0(p1, p2)∆Q1
α + K1(p1, p2)∆Q̂1

α

)

|0〉, (4.4)

with

K0 = −
√

2

g

x−
2 {x−

1 x−
2 (x+

1 x+
2 − 1) − x+

1 x+
2 (1 + x−

1 [x−
1 + x+

1 + x+
2 ])}

(x−
2 − x+

1 )(2x+
1 x+

2 x−
1 x−

2 − x−
1 x−

2 − x+
1 x+

2 )
×

×
[

f(p2)S(p1)√
ℓ2η(p2)

− e−i
p2
2 f(p1)√

ℓ1η(p1)

]

+
e−i

p2
2 f(p1)√

ℓ1η(p1)
(4.5)

K1 =
4i
√

2

g3/2

x−
1 x−

2 x+
1 x+

2

(x−
2 − x+

1 )(2x+
1 x+

2 x−
1 x−

2 − x−
1 x−

2 − x+
1 x+

2 )

[

f(p2)S(p1)√
ℓ2η(p2)

− e−i
p2
2 f(p1)√

ℓ1η(p1)

]

For the moment let us keep f, S arbitrary. The invariance of the S-matrix under Yangian

symmetry means that

S∆Q1
α = ∆opQ1

αS, S∆Q̂1
α = ∆opQ̂1

αS. (4.6)

In other words, we find:

S|α〉 = S

(

K0(p1, p2)∆Q1
α + K1(p1, p2)∆Q̂1

α

)

|0〉

=
(

K0(p1, p2)∆
opQ1

α + K1(p1, p2)∆
opQ̂1

α

)

S|0〉 (4.7)

=
(

K0(p1, p2)∆
opQ1

α + K1(p1, p2)∆
opQ̂1

α

)

|0〉, (4.8)

since S|0〉 = |0〉. However, we also have

|α〉π =
(

K0(p2, p1)∆
opQ1

α + K1(p2, p1)∆
opQ̂1

α

)

|0〉. (4.9)

This means that (3.5) corresponds to requiring that K0 and K1 are symmetric under

interchanging p1 ↔ p2. In other words, to find a well-defined coefficient, we have to solve

K0(p1, p2) = K0(p2, p1), K1(p1, p2) = K1(p2, p1), (4.10)

for the functions f and S.
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It is straightforward to prove that (4.10) is equivalent to the equations:

Kf(p1) + Gf(p2)S(p1) = f(p2)

Lf(p1) + Hf(p2)S(p1) = f(p1)S(p2), (4.11)

with

K =
ei

p1
2

ei
p2
2

√
ℓ2η(p2)√
ℓ1η(p1)

x+
1 − x−

1

x+
1 − x−

2

G = ei
p1
2

x−
1 − x−

2

x+
1 − x−

2

L = e−i
p2
2

x+
1 − x+

2

x+
1 − x−

2

H =

√
ℓ1η(p1)√
ℓ2η(p2)

x+
2 − x−

2

x+
1 − x−

2

. (4.12)

These equations are solved by the f, S found before, i.e. we again find (3.11) as unique solu-

tion. The discussion from the previous section holds also here. By fixing the normalization

of the first term to be f(p1), one finds that the second term is factorized and fixed.

Moreover, notice that from this construction we can read off elements of the S-matrix.

Namely, the coefficients that deal with the scattering of W
(1)

αaℓ1−1W
(2)

aℓ2
and W

(1)

aℓ1
W

(2)

αaℓ2−1 .

We compared the found coefficients with the explicit known S-matrices and we indeed find

perfect agreement. For example, for SBB they coincide with a9, a10, a31 and a32, cf. [27].

In conclusion, symmetry of the coefficients uniquely fixes the form of our wave func-

tion. We can now write the wave function, restricted to two sites, completely in terms

of coproducts and as a consequence (3.5) is automatically satisfied. Finally, the explicit

expressions for K0,K1 are

K0(p1, p2, y) =

√

x−
1

x+
1

√

x−
2

x+
2

y

(y − x−
1 )(y − x−

2 )

[

y − x−
1 x−

2 x+
1 x+

2 (x−
1 + x−

2 + x+
1 + x+

2 )

2x−
1 x−

2 x+
1 x+

2 − x−
1 x−

2 − x+
1 x+

2

]

K1(p1, p2, y) =
4i

g

√

x−
1

x+
1

√

x−
2

x+
2

y

(y − x−
1 )(y − x−

2 )

[

x−
1 x−

2 x+
1 x+

2

2x−
1 x−

2 x+
1 x+

2 − x−
1 x−

2 − x+
1 x+

2

]

. (4.13)

This consideration is valid for any bound state numbers and hence wave function (4.2) is

valid for any bound state representations. In particular, all bound state representations

share the same SI,II, and hence that part of the Bethe equations remains the same.

4.2 Multiple excitations

When dealing with two excitations, one needs to introduce a level II S-matrix that deals

with interchanging y1 and y2.

Fundamental representations. Let us first restrict to fundamental representations and

reformulate this in terms of coproducts. The wave function was of the form

|αβ〉 = |αβ〉y1y2 + SII|αβ〉y1y2, (4.14)

where

SII|αβ〉y1y2 = M(y1, y2)|αβ〉y2y1 + N(y1, y2)|βα〉y2y1 . (4.15)
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The natural way to write this would be:

|αβ〉y1y2 =
{

(∆̃y1Q
1
α)(∆̃y2Q

1
β) + ǫαβ∆′

y1,y2
L1

2

}

|0〉, (4.16)

with

∆′
y1,y2

L1
2 := L0(y1, y2, p1, p2)∆L1

2 + L1(y1, y2, p1, p2)∆L̂1
2 (4.17)

By taking α = β, one easily checks that the first part is indeed of the form (∆̃y1Q
1
α)(∆̃y2Q

1
β).

Hence, we have to solve L0, L1 such that our ansatz gives

{f(y1, p1)f(y2, p2)S(y2, p1) + Mf(y2, p1)f(y1, p2)S(y1, p1)}W (1)
α W

(2)
β

+Nf(y2, p1)f(y1, p2)S(y1, p1)W
(1)
β W (2)

α

+ǫαβh(y1, y2, p1)f(y2, p1)f(y1, p1)W
(1)
2 W

(2)
1 (4.18)

+ǫαβh(y1, y2, p2)f(y2, p2)f(y1, p2)S(y2, p1)S(y1, p1)W
(1)
1 W

(2)
2 ,

where we keep the functions M,N, h arbitrary. This gives two equations for L0 and two

equations for L1. Hence, requiring symmetry under p1 ↔ p2 will give us four equations

which can be shown to be equivalent to the following set of equations:

{f12f21S22 + Mf22f11S12} = {f11f22S21 + Mf21f12S11}
D + E

2
+ Nf21f12S11

D − E

2

+ (−f11f21h121 + f12f22S11S21h122)
C

2

Nf22f11S12 = {f11f22S21 + Mf21f12S11}
D − E

2
+ Nf21f12S11

D + E

2

− (−f11f21h121 + f12f22S11S21h122)
C

2
.

f11f21S12S22h121 = {f11f22S21 + (M − N)f21f12S11}
F

2
(4.19)

+f11f21h121
1 − B

2
+ f12f22S11S21h122

1 + B

2

f12f22h122 = −{f11f22S21 + (M − N)f21f12S11}
F

2
(4.20)

+f11f21h121
1 + B

2
+ f12f22S11S21h122

1 − B

2
,

where, for convenience, we introduced the short-hand notation fkl := f(yk, pl), Skl :=

SII,I(yk, pl),M := M(y1, y2), N := N(y1, y2) and hijk := h(yi, yj , pk). The coefficients

B,C,D,E, F are given by

B =
2x−

1 x−
2 (x+

2 )2 − (x−
1 x−

2 + 1)(x−
2 + x+

1 )x+
2 + 2x−

2 x+
1

(1 − x−
1 x−

2 )(x+
1 − x−

2 )x+
2

C = 2iη(p1)η(p2)
x−

2

x+
2

e−
ip1
2 (x+

2 − x+
1 )

(1 − x−
1 x−

2 )(x+
1 − x−

2 )

D =
x−

1 − x+
2

x−
2 − x+

1

e
ip1
2

e
ip2
2

(4.21)
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E =
e

ip1
2

e
ip2
2

(x−
1 (x−

2 (x−
1 − 2x+

1 ) + 1)x+
1 + (x+

1 + x−
1 (x−

2 x+
1 − 2))x+

2 )

(1 − x−
1 x−

2 )(x+
1 − x−

2 )x+
1

F = 2i
e−

ip1
2

η(p1)η(p2)

(x+
1 − x−

1 )(x+
2 − x−

2 )(x+
2 − x+

1 )

(1 − x−
1 x−

2 )(x+
1 − x−

2 )
.

It is readily seen that these expressions coincide with elements from the fundamental S-

matrix. Remarkably, these are exactly the same equations that arose in the nested Bethe

Ansatz. In other words, the coefficients B,C,D,E, F correspond to elements from the

fundamental S-matrix and we again find (3.17) as the unique solution for M,N, h.

It is worthwhile to note that in this way, we have derived the complete fundamental

S-matrix. This derivation differs fundamentally from the standard derivations [11, 8] since

it depends crucially on the full Yangian symmetry. There might be a relation with [44]

where the fundamental quantum S-matrix was also derived from Yangian symmetry.

To conclude, let us give the explicit solutions for L0, L1,

L0 =
g(y1 − y2)x

−
1 x−

2

2i(y1 − x−
1 )(y2 − x−

1 )(y1 − x−
2 )(y2 − x−

2 )
× (4.22)

×
[

(y1 + y2) −
x−

1 x−
2 x+

1 x+
2 (x−

1 + x−
2 + x+

1 + x+
2 )

2x+
1 x+

2 x−
1 x−

2 − x−
1 x−

2 − x+
1 x+

2

− y1y2x
+
1 x+

2

2x+
1 x+

2 x−
1 x−

2 − x−
1 x−

2 − x+
1 x+

2
{

(x+
1 +x+

2 −x−
1 −x−

2 )(x−
1 x−

2 −x+
1 x+

2 ) −
(

1

x−
2

+
1

x+
1

+
1

x+
2

+
1

x−
1

)

(x−
1 x−

2 +x+
1 x+

2 )

}]

L1 =
y1y2x

−
1 x−

2

(y1 − x−
1 )(y2 − x−

1 )(y1 − x−
2 )(y2 − x−

2 )

[

(y1 − y2) +
4ig−1x−

1 x−
2 x+

1 x+
2

2x+
1 x+

2 x−
1 x−

2 − x−
1 x−

2 − x+
1 x+

2

]

Note that they are indeed manifestly symmetric under p1 ↔ p2.

Bound states. One might hope that it is possible to repeat the construction of previous

section and find explicit elements of the bound state S-matrices again. However, when

considering bound states, one encounters a difficulty. There is a new term, which is of the

form W
(i)

αβ1ℓ1−2 . This term behaves exactly like W
(i)

21ℓ1−1 and therefore it is hard to rewrite

rewrite everything as in (4.19) in a unique way and read of S-matrix elements.

Nevertheless, we redo the procedure and try to match (4.16) to the obvious general-

ization of the two excitation ansatz

|αβ〉 =
∑

k<l

Ψk(y1)Ψl(y2)W
(1)

1ℓ1
. . . W

(k)

α1ℓk−1 . . . W
(l)

β1ℓl−1 . . . W
(K)

1ℓK
+

+SII
∑

k<l

Ψk(y1)Ψl(y2)W
(1)

1ℓ1
. . . W

(k)

α1ℓk−1 . . . W
(l)

β1ℓl−1 . . . W
(K)

1ℓK
+

+ǫαβ
∑

k

Ψk(y1)Ψk(y2)h(y1, y2, pk)W
(1)

1ℓ1
. . . W

(k)

21ℓk−1 . . . W
(K)

1ℓK
+

+
∑

k

Ψk(y1)Ψk(y2)g(y1, y2, pk)W
(1)

1ℓ1
. . . W

(k)

αβ1ℓk−2 . . . W
(K)

1ℓK
. (4.23)
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Or, restricted to two sites

|αβ〉 = {f(y1, p1)f(y2, p2)S(y2, p1) + Mf(y2, p1)f(y1, p2)S(y1, p1)}W
(1)

α1ℓ1−1W
(2)

β1ℓ2−1

+Nf(y2, p1)f(y1, p2)S(y1, p1)W
(1)

β1ℓ1−1W
(2)

α1ℓ2−1

+g(y1, y2, p1)f(y1, p1)f(y2, p1)W
(1)

αβℓ1−2W
(2)

1ℓ2

+g(y1, y2, p2)f(y2, p2)f(y1, p2)S(y1, p1)S(y2, p1)W
(1)

1ℓ1
W

(2)

αβℓ2−2 (4.24)

+ǫαβh(y1, y2, p1)f(y2, p1)f(y1, p1)W
(1)

21ℓ1−1W
(2)

1ℓ2

+ǫαβh(y1, y2, p2)f(y2, p2)f(y1, p2)S(y2, p1)S(y1, p1)W
(1)

1ℓ1
W

(2)

21ℓ2−1,

This is indeed possible and imposing symmetry of L0, L1 as before provides equations that

are uniquely solved by g(y1, y2, pk) = ℓk−1
2ℓk

(1 + M −N) and (3.17). These factor are, more

or less, expected from fusion. Plugging these solutions back in L0, L1, we find the same

functions L0, L1 as in (4.22) but one has to bear in mind that now x± parameterize bound

state solutions.

For completeness, we give the explicit two particle wave function (restricted to

two sites):

|αβ〉 = {f(y1, p1)f(y2, p2)S(y2, p1) + Mf(y2, p1)f(y1, p2)S(y1, p1)}W
(1)

α1ℓ1−1W
(2)

β1ℓ2−1

+Nf(y2, p1)f(y1, p2)S(y1, p1)W
(1)

β1ℓ1−1W
(2)

α1ℓ2−1

+
ℓ1 − 1

2ℓ1
(1 + M − N)f(y1, p1)f(y2, p1)W

(1)

αβℓ1−2W
(2)

1ℓ2

+
ℓ2 − 1

2ℓ2
(1 + M − N)f(y1, p2)f(y2, p2)S(y1, p1)S(y2, p1)W

(1)

1ℓ1
W

(2)

αβℓ2−2 (4.25)

+ǫαβh(y1, y2, p1)f(y2, p1)f(y1, p1)W
(1)

21ℓ1−1W
(2)

1ℓ2

+ǫαβh(y1, y2, p2)f(y2, p2)f(y1, p2)S(y2, p1)S(y1, p1)W
(1)

1ℓ1
W

(2)

21ℓ2−1,

with f, S, h,M,N as in (3.11), (3.17). By construction, this wave function satisfies (3.5)

for any bound state S-matrix. Hence this solves our two excitation case. In particular one

finds that also the level II S-matrix, SII is unchanged for bound states.

4.3 Bethe equations

By making use of coproducts and Yangian symmetry, we have found a way, independent

of the explicit form of the S-matrix, to write down Bethe wave functions. This allowed us

to find SII,I and we found that the level two S-matrix, SII remains unchanged. Hence all

the higher level factors also remain unchanged. In other words, this yields that the Bethe
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equations for any combination of bound states are given by:

eipkL =
KI
∏

l=1,l 6=k

[

S0(pk, pl)
x+

k − x−
l

x−
k − x+

l

√

x+
l x−

k

x−
l x+

k

]2 2
∏

α=1

KII
(α)
∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√

x+
k

x−
k

1 =

KI
∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√

x−
k

x+
k

KIII
(α)
∏

l=1

y
(α)
k + 1

y
(α)
k

− w
(α)
l + i

g

y
(α)
k + 1

y
(α)
k

− w
(α)
l − i

g

(4.26)

1 =

KII
(α)
∏

l=1

w
(α)
k − y

(α)
k − 1

y
(α)
k

+ i
g

w
(α)
k − y

(α)
k − 1

y
(α)
k

− i
g

KIII
(α)
∏

l 6=k

w
(α)
k − w

(α)
l − 2i

g

w
(α)
k − wα

l + 2i
g

,

with

x+
k +

1

x+
k

− x−
k − 1

x−
k

=
2iℓk

g
,

x+
k

x−
k

= eipk . (4.27)

However, note that apart from the parameters x±, the phase factor S0(pk, pl) also implicitly

depends on the considered bound states via [27]:

S0(p1, p2) =

(

x−
1

x+
1

)

ℓ2
2
(

x+
2

x−
2

)

ℓ1
2

σ(x1, x2) ×

×
√

G(ℓ2 − ℓ1)G(ℓ2 + ℓ1)

ℓ1−1
∏

l=1

G(ℓ2 − ℓ1 + 2l). (4.28)

The derived Bethe equations coincide with the equations one expects from a fusion proce-

dure. This justifies a fusion procedure at the level of the Bethe ansatz equations.

Finally, we will present the Bethe equations in the mirror theory since they will have

applications there for the TBA program. In the mirror theory the parameters a, b, c, d

describing the symmetry algebra have the same dependence on x± as in the original theory.

However x± are now dependent on the mirror momentum

x±
i (p̃) =

ℓi

2g

(

−
√

1 +
4g2

ℓ2
i + p̃2

∓ 1

)

(

− p̃

ℓi
− i

)

. (4.29)

To analyze bound states in the mirror theory it is more convenient to pick up a vacuum

build up out of fermions (sl(2) sector). The derivation can be repeated for this case and

the Bethe equations are given by [23]

eip̃kL =

KI
∏

l=1,l 6=k

S0(p̃k, p̃l)
2

2
∏

α=1

KII
(α)
∏

l=1

x+
k − y

(α)
l

x−
k − y

(α)
l

√

x−
k

x+
k

−1 =
KI
∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√

x−
k

x+
k

KIII
(α)
∏

l=1

y
(α)
k + 1

y
(α)
k

− w
(α)
l + i

g

y
(α)
k + 1

y
(α)
k

− w
(α)
l − i

g

(4.30)

1 =

KII
(α)
∏

l=1

w
(α)
k − y

(α)
k − 1

y
(α)
k

+ i
g

w
(α)
k − y

(α)
k − 1

y
(α)
k

− i
g

KIII
(α)
∏

l 6=k

w
(α)
k − w

(α)
l − 2i

g

w
(α)
k − wα

l + 2i
g

,
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where p̃ is the mirror momentum and x± are now given by (4.29). The −1 on the left

hand side is due to anti-periodic boundary conditions for the fermions [23]. For a detailed

account of the mirror theory and its analytic properties we refer to [23].
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